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Summary

1. The constraint on vertical water transport is considered an important factor limiting height

growth and maximum attainable height of trees. Here, we show evidence of foliar water stor-

age as a mechanism that could partially compensate for this constraint in Sequoia sempervi-

rens, the tallest species.

2. We measured hydraulic and morpho-anatomical characteristics of foliated shoots of tall

S. sempervirens trees near the wet, northern and dry, southern limits of its geographic distribu-

tion in California, USA.

3. The ability to store water (hydraulic capacitance) and saturated water content (leaf succu-

lence) of foliage both increased with height and light availability, maintaining tolerance of

leaves to water stress (bulk-leaf water potential at turgor loss) constant relative to height.

4. Transverse-sectional area of water-storing, transfusion tissue in leaves increased with height,

while the area of xylem tissue decreased, indicating increasing allocation to water storage and

decreasing reliance on water transport from roots.

5. Treetop leaves of S. sempervirens absorb moisture via leaf surfaces and have potential to

store more than five times the daily transpirational demand. Thus, foliar water storage may be

an important adaptation that helps maintain physiological function of treetop leaves and

hydraulic status of the crown, allowing this species to partially compensate for hydraulic

constraints and sustain turgor for both photosynthesis and height growth.

Key-words: height growth, hydraulic limitation, leaf anatomy, leaf capacitance, leaf succu-

lence, water relations

Introduction

Sequoia sempervirens is the only tree species with living

individuals exceeding 100 m in height. The tallest living

individual was remeasured at 115�76 m in 2013 (S.C. Sillett

unpublished). The physiological mechanisms underlying its

incredible height have recently been documented (Koch

et al. 2004; Ishii et al. 2008). Water supply to treetop

leaves is a key factor determining maximum attainable tree

height in S. sempervirens (Ambrose, Sillett & Dawson

2009) and other tall species (Ryan, Phillips & Bond 2006;

Meinzer et al. 2010). With increasing height, both the dis-

tance from roots to leaves and the hydrostatic gradient

caused by gravity impose limits on water transport (Midg-

ley 2003). Thus, treetop leaves operate under some mini-

mum constant water stress, constraining important

physiological functions, including cell elongation and pho-

tosynthesis, and ultimately limiting height growth (Menc-

uccini et al. 2005; Ryan, Phillips & Bond 2006). Due to

these constraints, the estimated maximum attainable height

for S. sempervirens under current environmental condi-

tions is at least 122 m (Koch et al. 2004; Koch & Sillett

2009). In addition to a limited water supply, drier air and

higher temperatures near the treetop caused by high light

intensities increase evaporative demand, exacerbating leaf

water stress (Franks 2006). This is an inescapable conse-

quence of height, and tall trees must cope with the

dilemma that water stress is never alleviated and greatest

where light availability for photosynthesis is highest.

The incredible stature of S. sempervirens suggests this

species may have physiological adaptations that compen-

sate for increasing water stress with height (West, Brown

& Enquist 1999; Du et al. 2008), which may include
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reduction of water stress by absorption of moisture

through leaf surfaces (Burgess & Dawson 2004). The tall-

est individuals occur in moist temperate forests near the

species’ northern distribution limit in California, where

rainfall is abundant and summer fog occurs frequently

(Dawson 1998). In contrast, tree heights are lower in drier

regions near the species’ southern distribution limit.

Absorption of fog via leaf surfaces reduces water stress of

S. sempervirens leaves, so that leaf water supply does not

depend solely on soil water availability and transport from

roots (Simonin, Santiago & Dawson 2009). If the absorbed

water can be stored in treetop leaves, it would reduce fur-

ther the reliance on vertical water transport. Although

hydraulic capacitance of woody tissue is considered an

important internal source of water in large trees (Phillips

et al. 2003; Cermak et al. 2007; Scholz et al. 2011), foliar

water storage has received less attention (Sack et al. 2003).

A striking feature of S. sempervirens is the great varia-

tion in shoot/leaf morphology from top to bottom of the

crown, which can span more than 90 m in depth (Koch

et al. 2004). Treetop leaves are small, thick and fused to

the vertically oriented shoot axis. In contrast, lower-crown

leaves are large, flat and segregated from the horizontally

oriented shoot axis. Generally, acclimation to the vertical

gradient in light availability explains changes in leaf mor-

phology within a tree crown (Valladares & Niinemets

2007; Niinemets 2010). In tall trees, however, morpho-ana-

tomical characteristics of leaves are more strongly deter-

mined by hydraulic properties associated with height

(Marshall & Monserud 2003; Cavaleri et al. 2010; Oldham

et al. 2010). In tall S. sempervirens, leaf mass per area

(LMA) increases with height, leading to less evaporative

surface area per unit leaf mass, whereas LMA is not corre-

lated with light intensity above 70 m (Ishii et al. 2008).

Leaves of all gymnosperm species have water-storing,

transfusion tissue surrounding vascular bundles (Brodribb

& Holbrook 2005; Aloni, Foster & Mattsson 2013). Trans-

fusion tissue, first documented in 1864, is a tracheary ele-

ment composed of tracheids, parenchyma and albuminous

cells (Takeda 1913; Hu & Yao 1981). In S. sempervirens,

the amount of transfusion tissue increases with increasing

height, reflecting anatomical acclimation to increasing

water stress (Oldham et al. 2010).

In this study, we measured the hydraulic and morpho-

anatomical characteristics of leaves of tall S. sempervirens

trees near the wet, northern and dry, southern limits of

its distribution in California. We investigate how the

capacity and mechanisms for foliar water storage respond

to increasing water stress associated with increasing

height and atmospheric evaporative demand. We discuss

how such adaptations may contribute to maintaining

hydraulic status in treetop leaves of the world’s tallest

species.

Materials and methods

The study was conducted at Prairie Creek Redwoods State Park

(41�37°N, 124�02°W, 55 m asl) and Landels-Hill Big Creek

Reserve (36�05°N 121�57°W, 60 m asl). Long-term (1895–2012)
average annual precipitation at Prairie Creek is 1857 mm with

55 mm occurring during summer months (June, July and August),

whereas Landels-Hill receives 801 mm with only 5 mm occurring

in summer (PRISM Climate Group 2013). Based on records from

Arcata Airport (40�98°N, 124�11°W, 64 m asl) and Monterey Pen-

insula Airport, CA (36�58°N, 121�85°W, 50 m asl) located near

the two study sites, long-term (1951–2009) averages of fog

(a) (b)

(c) (d)

Fig. 1. Water storage of small, foliated

shoots of tall S. sempervirens trees.

Hydraulic capacitance (a, b) and succulence

(saturated water content per leaf surface

area (c, d)) shown in relation to height and

light availability (total site factor). Each

datum represents mean of three to five foli-

ated shoots sampled at each height. Filled

and open symbols denote trees in Prairie

Creek Redwoods State Park and Landels-

Hill Big Creek Reserve, respectively.

Symbol shapes denote different trees.

Regression lines fitted to data from all six

trees.
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frequencies (i.e. number of days when visibility <1 km) are 43�5
and 40�5%, respectively, with fog frequencies being highest during

summer months (Johnstone & Dawson 2010).

We selected three study trees from among the tallest individuals

at each site. Heights of the study trees were 109�9, 103�9 and

101�9 m at Prairie Creek and 79�8, 72�9 and 70�0 m at Landels-

Hill. We climbed trees using ropes and stretched a tape measure

from treetop to ground level. Small branches (30–50 cm long)

were sampled from the outer crown of each tree at 10- to 15-m

intervals from just below treetop to the lowest living branch.

Hemispherical photographs were taken directly above each sam-

pling location to quantify the light environment. Sample branches

were sealed in black plastic bags, transported to the ground,

immediately recut under water and fully rehydrated in the labora-

tory overnight.

We used the bench-drying approach to the pressure–volume

technique (Tyree & Hammel 1972; Schulte & Hinckley 1985) to

measure bulk-leaf water potential (ΨL) and fresh weight (before

and after each water potential reading) repeatedly of three to five

small, foliated shoots comprising second- and current-year inter-

nodes (repeat pressurization method, Hinckley et al. 1980; Ritchie

& Roden 1985; Parker & Colombo 1995). Care was taken to

increase and decrease the pressure in the chamber very slowly

(<0�01 MPa s�1) so as not to damage the sample shoot. During

our pressure–volume measurements, when the shoot was slowly

pressurized to force water out of the xylem, we observed cases

where excess water (i.e. water stored outside of vascular tissue)

entered the xylem and bulk-leaf water potential recovered. We

corrected for this effect following methods described in (Kubiske

& Abrams 1991).

The pressure–volume curve was used to calculate fresh weight

at saturation (MF, g), hydraulic capacitance (C, mol m�2 MPa�1),

osmotic potential at turgor loss (Ψtlp, MPa) and relative water

content at turgor loss (RWCtlp) at the bulk-shoot level (Cheung,

Tyree & Dainty 1975; Richter 1978; Tyree & Richter 1981; Schulte

& Hinckley 1985). To calculate C, we first estimated Ψtlp from the

inflection point of the ΨL–RWC relationship. The slope of the

relationship before turgor loss was multiplied by the saturated

water content (mol H2O) of the shoot and divided (normalized) by

total leaf surface area (AL) (Brodribb et al. 2005). To quantify the

maximum amount of foliar water storage, we calculated bulk-

shoot succulence (S, g H2O m�2), which is defined as (MF�MD)/

AL, where MD is dry mass (g) of the foliated shoot (Bacelar et al.

2004). C represents the ability of shoots to store water relative to

transpiring leaf area, while S represents the maximum amount of

water that can be stored. In the process of calculating C, the bulk

tissue elastic modulus was also calculated. Because C is standard-

ized by leaf area, it provides an adequate relative measure of cell-

wall elasticity.

To quantify shoot silhouette area (AS), we scanned sample

shoots at 600 dpi using a flatbed scanner (Expression 10000XL,

Epson America Inc., Long Beach, CA, USA). All leaves were then

removed from the shoot axis, placed on the scanner with no over-

lap and scanned to quantify projected leaf area (AP). To observe

leaf anatomy, second-year leaves were fixed in FPA, transversely

sectioned at mid-point to 20 lm thickness using a microtome and

double stained with safranin and fast green. Photographed images

(4009 magnification) of the transverse leaf sections were used for

anatomical analyses. All shoot samples were oven-dried at 70 °C
to constant weight to determine MD.

DATA ANALYSES

We analysed hemispherical photographs using Gap Light Analyzer

(ver 3.1, Simon Frazer University, Bernaby, BC, Canada) to calcu-

late canopy openness, total radiation simulated over a 12-month

growing season and three site factors expressing the percentage of

direct, indirect and total radiation received. Total site factor (here-

after TSF) was most strongly correlated with hydraulic and mor-

phological variables and therefore used as the measure of light

availability. Scanned images of shoots and leaves were analysed

using Image J (National Institutes of Health, Bethesda, MD, USA)

to determine AS and AP. We calculated leaf mass per area (LMA,

g m�2) as the ratio of leaf dry mass to AP and shoot mass per area

(SMA, g m�2) as the ratio of MD to AS. Perimeter-to-width ratios

of leaf transverse sections were multiplied by AP to obtain AL (Bar-

clay & Goodman 2000), which was then used to calculate C. All

hydraulic and morphological variables were regressed against

height and TSF using model fitting in JMP 10 (SAS Institute Inc.).

The difference between sites was examined via analysis of covari-

ance (separate slopes model) with height and TSF as covariates.

Results

Both hydraulic capacitance (C) and leaf succulence (S) of

foliated shoots increased with height (Fig. 1a,c,

C = (0�115 � 0�062) + (0�00816 � 0�00096)h, P < 0�00001;

(a)

(b)

Fig. 2. Hydraulic properties of foliated shoots of tall S. sempervi-

rens trees. Bulk-leaf water potential at turgor loss (a) and relative

water content at turgor loss (b) shown in relation to height. Sym-

bols and regression line as in Fig. 1.
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S = (67�7 � 9�1) + (1�36 � 0�14)h, P < 0�00001, where h

equals height, n = 39). At the same height, both C and S

were greater for southern than northern trees (ANCOVA,

F = 12�69, P = 0�0011 and F = 8�93, P = 0�0051, respec-

tively). However, in relation to total site factor (TSF),

there was no distinction between sites (Fig. 1b,d,

C = (0�139 � 0�028)TSF(0�434 � 0�051), P < 0�00001; S =
(63�0 � 7�3)TSF(0�260 � 0�031), P < 0�00001, n = 39). Thus,

despite their lower stature (70–80 m), the highest, most

exposed leaves of the southern trees had similar water stor-

age capacity as those of the northern trees (>100 m).

In contrast, osmotic potential at turgor loss (Ψtlp) did

not change with height (Fig. 2a, Ψtlp = �1�972 � 0�038,
P = 0�800, n = 39). Treetop shoots had greater water

storage and consequently higher water content at

saturation compared to those lower in the crown. This

added buffer resulted in lower relative water content at

turgor loss (RWCtlp) such that treetop shoots did not

lose turgor until they had lost nearly 20% of their

saturated water content (Fig. 2b, RWCtlp = (0�878
� 0�009) + (�0�00061 � 0�00014)h, P = 0�00001, n = 39).

Vertical changes in leaf and shoot morphology (LMA

and SMA, respectively) closely paralleled those of water

storage (Fig. 3). In the northern trees, shoot morphology

did not change below c. 60 m, where light availability was

consistently low (6�1 � 1�2% TSF, n = 7), resulting in a

nonlinear response. We also found anatomical changes

reflecting adaptation for water storage. Transverse-sec-

tional area of transfusion tissue (AT) increased, whereas

area of xylem tissue (AX) decreased with height (Fig. 4a,b,

AT = (3�40 9 10�3 � 1�53 9 10�3) + (1�40 9 10�4 � 2�35
9 10�5)h, P < 0�0001; AX = (2�06 9 10�3 � 1�16 9 10�4)

� (1�10 9 10�5 � 1�77 9 10�6)h, P < 0�0001, n = 38). The

decrease in AX with height was attributable to a decrease in

the number of xylem tracheids (NT) (Fig. 4c,

NT = (38�51 � 1�93)�(0�210 � 0�030)h, P < 0�0001,
n = 38) as transverse-sectional area of individual xylem

tracheids (aT) did not change with height (Fig. 4d,

aT = (54�04 � 2�48) + (0�018 � 0�038)h, P = 0�644,
n = 38).

Discussion

The structure and orientation of well-illuminated S. sem-

pervirens leaves allow them to collect moisture (Fig. 5) and

absorb it (Burgess & Dawson 2004; Simonin, Santiago &

Dawson 2009). Our results demonstrate that some of this

water can be stored internally, which could reduce reliance

on water transport from roots. Foliar water uptake and

storage have positive effects on physiological function in

water-stressed plants (e.g. Martin & Willert 2000; Bres-

hears et al. 2008). The ability of S. sempervirens foliage to

store water increases with both height and light availability

such that treetop shoots have maximum hydraulic capaci-

tance and succulence. Compared to those lower in the

crown, treetop shoots experience greater hydrostatic and

hydrodynamic constraints on their internal water supply.

Foliar water storage helps explain why, despite being the

tallest species, midday xylem pressures in treetop shoots of

S. sempervirens are not as low as in other tall species

(a) (b)

(c) (d)

Fig. 3. Shoot/leaf morphology of tall

S. sempervirens trees. Leaf mass per area

(LMA) and shoot mass per area (SMA)

shown in relation to height and light avail-

ability (total site factor). Symbols and

regression lines as in Fig. 1.
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(Koch et al. 2004; Ishii et al. 2008), which tolerate increas-

ing water stress with height by reaching lower daytime

water potentials and turgor loss points (Bauerle et al.

1999; Woodruff, Bond & Meinzer 2004). Foliar water stor-

age is also consistent with the occurrence of xylem flow

reversal in treetop branches of S. sempervirens (Burgess &

Dawson 2004).

The mean daytime transpiration rate documented for

S. sempervirens treetops (c. 0�06 mmol H2O m�2 s�1;

Ambrose et al. 2010) multiplied over a 10-h daytime period

amounts to 38�9 g H2O m�2. Thus, given the mean succu-

lence we documented for treetop shoots (204�1 g H2O m�2),

foliage alone can store more than five times the daily

transpirational demand at the treetop. Because we removed

effects of the gravitational potential gradient in our cut-

rehydrate treatment, and foliage under chronic water stress

cannot remain fully saturated in situ, our succulence calcula-

tions likely represent maximum values for foliar water stor-

age. Nevertheless, the magnitude of foliar water storage may

help treetop leaves avoid turgor loss, maintain stomatal

functioning and sustain photosynthesis.

Plant leaves under increasing water stress often accli-

mate by lowering the turgor loss point (Pallardy 2007). In

tall trees of P. menziesii, Ψtlp decreases with increasing

height (Bauerle et al. 1999; Woodruff, Bond & Meinzer

2004). We found that increasing succulence and decreasing

RWCtlp contributed to maintaining Ψtlp constant within

the crown of tall S. sempervirens trees. This mechanism is

similar to succulent plants that utilize stored water in dry

habitats (Zimmermann & Milburn 1982; Barcikowski &

Nobel 1984). Our observations of xylem pressure responses

to excess water during pressure–volume measurements

imply that when water potential decreases, stored water

can be used to prevent xylem pressures from dropping fur-

ther. Independent analyses of S. sempervirens leaf anatomy

revealed that transfusion tissue surrounding the xylem may

collapse during periods of high water stress, such that

water stored therein can enter xylem tracheids and provide

a leaf-level hydraulic buffer against cavitation (Oldham

et al. 2010). Increasing area of transfusion tissue relative

to xylem suggests increasing dependence on stored water

and decreasing reliance on water transport with increasing

height.

(a) (b)

(c) (d)

Fig. 4. Leaf anatomy of tall S. sempervi-

rens trees. Transverse-sectional area of

transfusion tissue (a) and of xylem (b),

number of tracheids (c) and transverse-sec-

tional area of individual tracheids (d)

shown in relation to height. Symbols and

regression lines as in Fig. 1.

Fig. 5. Treetop leaves of the tallest S. sempervirens (115�72 m in

2012 when photograph was taken) still retain dew droplets on leaf

surfaces by mid-morning. Scale on right indicates 6 cm of vertical

growth since 2011.
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In many gymnosperms, there appears to be a trade-off

between xylem safety and vulnerability to cavitation such

that tracheid diameters in the main stem and branches

decrease with increasing height (Hacke & Sperry 2001; Ty-

ree & Zimmermann 2002; Sperry, Meinzer & McCulloh

2008). In tall P. menziesii trees, both the quantity and

diameter of leaf tracheids decrease with increasing height

(Woodruff, Meinzer & Lachenbruch 2008). In contrast,

leaf tracheid diameter was constant with respect to height

in tall S. sempervirens. The safety margin against cavita-

tion may be larger for stem and branches as opposed to

leaves because loss of function in the former would lead to

more extensive damage. Recent theoretical work suggests

that xylem tapering cannot compensate completely for the

hydraulic limitations of tree growth (Zaehle 2005), leaving

open the possibility that other compensating mechanisms

are involved. Our results indicate that anatomical changes

may help maintain homeostasis of shoot hydraulic func-

tioning in S. sempervirens. In the upper crown, leaves fuse

to the shoot axis creating a relatively large tissue volume

and intercellular space surrounding xylem that likely stores

more water per unit xylem than in the lower crown

(Fig. 6). In addition to quantitative aspects of leaf and

shoot anatomy, decreasing RWCtlp and increasing hydrau-

lic capacitance with increasing height and light availability

reflect greater cell-wall elasticity, which enhances the

potential of individual cells, including transfusion tissue,

to expand and store water (Brodribb et al. 2005).

Similar leaf- and shoot-level responses to light avail-

ability in taller northern and shorter southern forests

suggest that on top of the hydrostatic gradient, which

increases linearly with height, evaporative demand driven

by light intensity helps determine morphological, ana-

tomical and physiological characteristics in of S. semper-

virens foliage. Associated with height- and light-related

changes in shoot structure, various hydraulic resistances

within leaves also limit photosynthesis (Sack & Holbrook

2006; Brodribb, Field & Jordan 2007; Mullin et al.

2009). In S. sempervirens, water storage near the site of

photosynthesis helps overcome these constraints, explain-

ing how the world’s tallest species solves the dilemma

that water stress is greatest where light availability for

photosynthesis is highest.
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